Obviously we make a lot of recombinant DNA constructs and create a bunch of different assays to try to understand biology. Well, at some point I became curious if I could come up with a protease cleavage assay for measuring how various peptide sequences could be substrates for vesicular proteases inside cells. I figured we’d start to test this by looking at furin cleavage, since 1) furin is quite ubiquitous, 2) furin cleavage is relevant for multiple disease-relevant membrane proteins, like many viral entry glycoproteins, and 3) including SARS-CoV-2 spike, where the furin cleavage site in that protein is thought to contribute to its dynamics of spread and pathogenicity during infection.
Well, the first construct that may have worked is a pretty simple one, where I have EGFP targeted to extracellular space using an N-terminal signal peptide, but retained on the cell surface by having it C-terminally fused to a transmembrane domain. Anh has actually been using this construct as part of his undergraduate research project. Well, to turn this construct into one that can study Furin cleavage, I modified it to encode a R-R-A-R peptide between EGFP and the transmembrane domain. Thus, if Furin cleaves this construct, the EGFP protein is now no longer tethered to the cell, and presumably escapes into the media once it reaches the cell surface.
So this is an N=1 experiment so far, so it’s not the most conclusive. That said, there does seem to be decent separation between the construct with and without the furin cleavage site, where cells with the construct with the EGFP that potentially gets released had ~ 10-fold less fluorescence than the construct that could get released. I suppose if this reproduces, it could be worth trying to turn this into a library-based experiment for studying protease cleavage within intracellular compartments.
… Though now that I’m thinking about it further, I’ll definitely need to ask how these cells were prepped. If they were prepped with trypsin (which is likely), this was likely more of a trypsin cutting assay rather than a furin one.
Edit 10/27/22:
Well, so to avoid the whole trypsin complicated, recombined the above constructs in suspension HEK cells that are floating and don’t ever need to be detached off the plate for flow. Here’s what that plot looks like.
So ya, we’re still seeing the ~ 10-fold effect there, so it looks like that’s the real dynamic range of the assay for measuring furin protease cleavage.