Amplicon-EZ is a pretty convenient service from Genewiz. In short, they’ll perform Illumina sequencing on a 150-500 nt DNA fragment you send them (they’l perform 2 x 250 cycles of sequencing, so fragments smaller than 500nt will have paired read regions). For $50 per sample, they’ll return ~50,000 reads (although in our experience, they tend to return more than this). Turnaround times can be kind of slow (while one can minimize the delay if you time things perfectly, it’s taken between 14 and 19 days to get data back following submission). That said, we’re still only running full kits a couple of times a year, so obviously a lot faster turnaround than that. Thus, definitely good for getting an initial look into something you may want to sequence more deeply later. My general policy for that lab is that if you make any library, it’s worth submitting the library to Illumina sequencing via Amp-EZ pretty early on so you can be confident that the library is good and worthy of further experiments.
Designing primers
Primers are pretty simple to design. Essentially, you’ll want to make a pair of PCR primers with Amp-EZ adapters on the 5′ ends (and of course, DNA hybridizing sequences on the 3′ ends). As shown in the above link, the adapter sequences are:
For the forward sequencing read: 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’
For the reverse sequencing read: 5’-GACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’. <- Reverse strand on plasmid map
Here’s an example of a map and corresponding annotated primers used to sequence the ACE2 Kozak library plasmid, and a similar map for sequencing the library after its been integrated into landing pad cells.
Amplifying your fragment
For the actual protocols to do this, it’s probably worth asking Sarah or Nidhi how they do it. The basic steps are going to be PCR, gel extraction of the band, and Qubit quantitation of the extracted DNA. Some things to keep in mind are that they’ll want a fair amount of DNA (500 ng), so you’ll either want to make sure you do a lot of cycles and extract a pretty hefty band, or you’ll need to do a second amplification from the initially extracted DNA.